DNA, the common carrier of the genetic information for all living entities on this planet, is omnipresent and we are daily exposed to large quantities of foreign DNA (e.g., by food or bacterial infections). Under these circumstances, nature had to provide powerful barriers against the spontaneous insertion of foreign DNA sequences into the genomic DNA of cells. Barriers are the plasma membrane of the cell, the envelope of the cell’s nucleus, but also the possibility for DNA degradation in lysosomes and the cytoplasm. These protective mechanisms work rather well and even under optimized conditions it is by no means easy to genetically modify an eukaryotic cell (the terminus usually employed for this modification is to “transfect” the cell). However, the necessity to transfect cells for research purposes, the discovery of new and efficient reporter systems to verify the success of a transfection experiment (luciferase, green fluorescent protein) as well as the availability of powerful transfection reagents have spurred research in the area for many years. Several methods to transfer genes into cells have been developed during the last 30 years. However, considerable efforts to develop new techniques or to improve the efficiency of old ones are still being made.
Transfection reagents help to overcome the natural barriers to gene transfer by various strategies.
The steps involved in the transfer of a “gene” from the outside into the genome of the cell comprise of the following:
1. Compaction of the DNA,
2. Attachment to the cell surface,
3. Transport into the cytoplasm,
4. Import into the nucleus and
5. Insertion into the chromosomal DNA.
The mechanism by which a certain barrier is overcome is an important feature of the respective transfection reagent. In order to elucidate the difficulties in optimizing the genetic engineering of mammalian cells, the major steps of transfection as well as putative agents for reaching this goal will be discussed in detail in the following sections. The mechanisms for many of the above-mentioned five steps of transfection are still under discussion. This is especially the case for the later steps taking place inside the cell, i.e., transport into the cell and most importantly into the nucleus. The earlier stages of compaction and interaction with the cell surface are better understood. This has important consequences for our current ability to engineer transfection agents and procedures. It should be noted that man-made transfection procedures are still orders of magnitude less efficient than nature’s transfection agents, the viruses are. One to five infectious particles, i.e., viruses, per cell are sufficient in that case, compared to the 105– 106 plasmid molecules needed in most nonviral transfection methods.
Monday, 25 October 2010
What are the barriers to Efficient Gene Transfer?
Understanding the Process of compaction of DNA
Pure (“naked”) DNA has little chance to enter a cell. DNA is a huge, negatively charged and hence highly hydrophilic molecule. Cells are surrounded by a hydrophobic plasma membrane and, in addition, bear a negative surface charge. The plasma membrane contains several highly selective transporter units, which allow for the well-controlled introduction and excretion of certain molecules. Foreign DNA is normally not amongst the molecules allowed to enter the cell.
The first and best-understood step of transfection is therefore the necessity for “compaction” of the large, negatively charged DNA molecule. A suitable compacting agent is a positively charged molecule able to interact with the DNA and to neutralize or even overcompensate the negative charges. During compaction, the DNA forms stable complexes with the compaction agent, which either stay in solution or form a precipitate. In a typical transfection experiment, the complexes are formed in a reaction mixture containing the given amounts of purified DNA as well as the compaction agent under defined pH and salt conditions. The complex formation occurs spontaneously upon mixing. Within the next 30 minutes the complexes are added to the target cells. Usually, cells are exposed for several hours to the complexed DNA. Subsequently, the medium is exchanged in order to minimize possible toxic effects.
Two groups of molecules are currently investigated as compaction agents: cationic lipids and cationic polymers. Protonated amino groups provide the required positive charges in both cases. Amino groups are also found in some of the naturally occurring compaction agents such as spermine and spermidine. They are clearly the group of choice, since they allow the generation of a positive charge at physiological (neutral) pH. In addition, eukaryotic cells developed over eons of evolution special proteins (nucleosomes) with a high affinity to DNA, which also can complex DNA. The structure of these nucleosomes may in the future inspire the design of novel compaction agents. Prominent representatives are histones or protamines, naturally occurring ubiquitous DNA binding (compacting) proteins.
Cationic lipids are usually fairly small molecules, which mimic the structure of the cell’s plasma membrane and hence facilitate the passage of DNA into the cell by increasing the solubility of the DNA in the plasma membrane. These molecules consist of a hydrophobic (hydrocarbon) tail and a positively charged head-group. The hydrophobic tail promotes in aqueous solutions self-aggregation into larger structures (micelles, double layers) capable of interaction or even fusion with the cellular membrane.
The cationic polymers (such as polyethyleneimine, polyvinyl pyrrolidone) commonly used for transfection are fairly large molecules (up to 1,000,000 g/mol). They are soluble in water at neutral pH due to their positive charges. Linear as well as branched molecules are employed for transfection. In contrast to the cationic lipids, which usually were developed as dedicated transfection reagents, most cationic polymers have been developed for other applications and purposes. They are therefore available from several suppliers in a wide variety of purity and chemical homogeneity.