Saturday, 5 March 2011

Future trends in GM crops

The introduction of GM crops in the lexicon of the word agriculture has contributed to spend hours of research and ways the most rapid increase in areas where technology can be used for commercial applications. Now, the introduction of foreign genes in plant species of economic importance, resulting in crop improvement and production of new products in the factories are no longer regarded with awe. Nor is the use of industrial chemicals and environmentally friendly alternative cost effective as biofuels, bio-fertilizers and organic pesticides that are also due to increased agricultural production, improve health and safety standards.

The introduction of commercial crops with agronomic traits is often referred to as the first generation of GM plants. The development of GM crops with agronomic traits and the continuous production of a range of GM crops with improved properties is also running under laboratory conditions. Several new characters are being tested in laboratory and field trials in a number of countries. Many of these GM crops "second generation are still under development and not likely to enter the market for several years. All of the GM crops on the market for commercial applications only after careful consideration and legal approvals.

The main areas of research and development (R & D) in the field of GM crops are as follows:

1. agronomic traits and resistance to virus

2. Altered nutrition and composition.

Improvement of agronomic traits

This evolution makes plants resistant to pests and diseases and helps the crop to grow without being affected by weeds and insects. In the short term, most recently commercialized GM crops continue to focus on agronomic traits, including herbicide resistance and insect resistance and, indirectly, the potential yield. R & D in this area focuses on:

1. Enter characters herbicide resistance in a wider range of varieties of corn, soybean and rapeseed.
2. Broadening the range of herbicides that can be used in combination with GM crops resistant to herbicides, such as the introduction of herbicide tolerance to bromoxynil, oxynil and sulfonylurea.
3. New genes for insect resistance in plants Stack, such as new variants containing other Bt toxins

Adding resistance to viruses. resistance to the virus could be extremely important for improving agricultural productivity. The following field trials of crops resistant to the virus are underway in different parts of the world: the sweet potato (feathery mottle virus), corn (maize streak virus) and African cassava (mosaic virus). These crops could be marketed within 3-5 years. Because of its complex genome, the work on virus-resistant wheat and barley yellow dwarf progress is still being studied in the laboratory.